Deep Self-representative Concept Factorization Network for Representation Learning

12/13/2019 ∙ by Yan Zhang, et al. ∙ 16

In this paper, we investigate the unsupervised deep representation learning issue and technically propose a novel framework called Deep Self-representative Concept Factorization Network (DSCF-Net), for clustering deep features. To improve the representation and clustering abilities, DSCF-Net explicitly considers discovering hidden deep semantic features, enhancing the robustness proper-ties of the deep factorization to noise and preserving the local man-ifold structures of deep features. Specifically, DSCF-Net seamlessly integrates the robust deep concept factorization, deep self-expressive representation and adaptive locality preserving feature learning into a unified framework. To discover hidden deep repre-sentations, DSCF-Net designs a hierarchical factorization architec-ture using multiple layers of linear transformations, where the hierarchical representation is performed by formulating the prob-lem as optimizing the basis concepts in each layer to improve the representation indirectly. DSCF-Net also improves the robustness by subspace recovery for sparse error correction firstly and then performs the deep factorization in the recovered visual subspace. To obtain locality-preserving representations, we also present an adaptive deep self-representative weighting strategy by using the coefficient matrix as the adaptive reconstruction weights to keep the locality of representations. Extensive comparison results with several other related models show that DSCF-Net delivers state-of-the-art performance on several public databases.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 2

page 6

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.