Deep Reinforcement Learning Algorithm for Dynamic Pricing of Express Lanes with Multiple Access Locations

09/10/2019
by   Venktesh Pandey, et al.
12

This article develops a deep reinforcement learning (Deep-RL) framework for dynamic pricing on managed lanes with multiple access locations and heterogeneity in travelers' value of time, origin, and destination. This framework relaxes assumptions in the literature by considering multiple origins and destinations, multiple access locations to the managed lane, en route diversion of travelers, partial observability of the sensor readings, and stochastic demand and observations. The problem is formulated as a partially observable Markov decision process (POMDP) and policy gradient methods are used to determine tolls as a function of real-time observations. Tolls are modeled as continuous and stochastic variables, and are determined using a feedforward neural network. The method is compared against a feedback control method used for dynamic pricing. We show that Deep-RL is effective in learning toll policies for maximizing revenue, minimizing total system travel time, and other joint weighted objectives, when tested on real-world transportation networks. The Deep-RL toll policies outperform the feedback control heuristic for the revenue maximization objective by generating revenues up to 9.5 the heuristic and for the objective minimizing total system travel time (TSTT) by generating TSTT up to 10.4 shaping methods for the POMDP to overcome the undesired behavior of toll policies, like the jam-and-harvest behavior of revenue-maximizing policies. Additionally, we test transferability of the algorithm trained on one set of inputs for new input distributions and offer recommendations on real-time implementations of Deep-RL algorithms. The source code for our experiments is available online at https://github.com/venktesh22/ExpressLanes_Deep-RL

READ FULL TEXT

page 21

page 22

page 33

research
03/27/2018

Reinforcement Learning for Fair Dynamic Pricing

Unfair pricing policies have been shown to be one of the most negative p...
research
05/04/2022

Constrained Backward Time Travel Planning is in P

We consider transportation networks that are modeled by dynamic graphs, ...
research
11/20/2020

Deep Reinforcement Learning for Feedback Control in a Collective Flashing Ratchet

A collective flashing ratchet transports Brownian particles using a spat...
research
07/10/2023

RLTF: Reinforcement Learning from Unit Test Feedback

The goal of program synthesis, or code generation, is to generate execut...
research
05/11/2022

RLOP: RL Methods in Option Pricing from a Mathematical Perspective

Abstract In this work, we build two environments, namely the modified QL...
research
01/02/2023

On the Challenges of using Reinforcement Learning in Precision Drug Dosing: Delay and Prolongedness of Action Effects

Drug dosing is an important application of AI, which can be formulated a...

Please sign up or login with your details

Forgot password? Click here to reset