Deep Q-Networks for Accelerating the Training of Deep Neural Networks

06/05/2016 ∙ by Jie Fu, et al. ∙ 0

In this paper, we propose a principled deep reinforcement learning (RL) approach that is able to accelerate the convergence rate of general deep neural networks (DNNs). With our approach, a deep RL agent (synonym for optimizer in this work) is used to automatically learn policies about how to schedule learning rates during the optimization of a DNN. The state features of the agent are learned from the weight statistics of the optimizee during training. The reward function of this agent is designed to learn policies that minimize the optimizee's training time given a certain performance goal. The actions of the agent correspond to changing the learning rate for the optimizee during training. As far as we know, this is the first attempt to use deep RL to learn how to optimize a large-sized DNN. We perform extensive experiments on a standard benchmark dataset and demonstrate the effectiveness of the policies learned by our approach.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

Code Repositories

qan

Deep Q-Networks for Accelerating the Training of Deep Neural Networks


view repo
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.