Deep Q-Learning Based Resource Allocation in Interference Systems With Outage Constraint

03/05/2022
by   Saniul Alam, et al.
0

This correspondence considers the resource allocation problem in wireless interference channel (IC) under link outage constraints. Since the optimization problem is non-convex in nature, existing approaches to find the optimal power allocation are computationally intensive and thus practically infeasible. Recently, deep reinforcement learning has shown promising outcome in solving non-convex optimization problems with reduced complexity. In this correspondence, we utilize a deep Q-learning (DQL) approach which interacts with the wireless environment and learns the optimal power allocation of a wireless IC while maximizing overall sum-rate of the system and maintaining reliability requirement of each link. We have used two separate deep Q-networks to remove the inherent instability in learning process. Simulation results demonstrate that the proposed DQL approach outperforms existing geometric programming based solution.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset