Deep Personalized Re-targeting
Predicting booking probability and value at the traveler level plays a central role in computational advertising for massive two-sided vacation rental marketplaces. These marketplaces host millions of travelers with long shopping cycles, spending a lot of time in the discovery phase. The footprint of the travelers in their discovery is a useful data source to help these marketplaces to predict shopping probability and value. However, there is no one-size-fits-all solution for this purpose. In this paper, we propose a hybrid model that infuses deep and shallow neural network embeddings into a gradient boosting tree model. This approach allows the latent preferences of millions of travelers to be automatically learned from sparse session logs. We find that there is a pragmatic sweet spot between expensive complex deep neural networks and simple shallow neural networks that can increase the prediction performance of a model by seven percent, based on offline analysis.
READ FULL TEXT