DeepAI AI Chat
Log In Sign Up

Deep neural networks-based denoising models for CT imaging and their efficacy

by   Prabhat KC, et al.
U.S. Department of Health and Human Services

Most of the Deep Neural Networks (DNNs) based CT image denoising literature shows that DNNs outperform traditional iterative methods in terms of metrics such as the RMSE, the PSNR and the SSIM. In many instances, using the same metrics, the DNN results from low-dose inputs are also shown to be comparable to their high-dose counterparts. However, these metrics do not reveal if the DNN results preserve the visibility of subtle lesions or if they alter the CT image properties such as the noise texture. Accordingly, in this work, we seek to examine the image quality of the DNN results from a holistic viewpoint for low-dose CT image denoising. First, we build a library of advanced DNN denoising architectures. This library is comprised of denoising architectures such as the DnCNN, U-Net, Red-Net, GAN, etc. Next, each network is modeled, as well as trained, such that it yields its best performance in terms of the PSNR and SSIM. As such, data inputs (e.g. training patch-size, reconstruction kernel) and numeric-optimizer inputs (e.g. minibatch size, learning rate, loss function) are accordingly tuned. Finally, outputs from thus trained networks are further subjected to a series of CT bench testing metrics such as the contrast-dependent MTF, the NPS and the HU accuracy. These metrics are employed to perform a more nuanced study of the resolution of the DNN outputs' low-contrast features, their noise textures, and their CT number accuracy to better understand the impact each DNN algorithm has on these underlying attributes of image quality.


page 4

page 5

page 8

page 9

page 10


Task-Oriented Low-Dose CT Image Denoising

The extensive use of medical CT has raised a public concern over the rad...

Structure-sensitive Multi-scale Deep Neural Network for Low-Dose CT Denoising

Computed tomography (CT) is a popular medical imaging modality in clinic...

EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising

In the past few decades, to reduce the risk of X-ray in computed tomogra...

Low-Dose CT Image Denoising Using Parallel-Clone Networks

Deep neural networks have a great potential to improve image denoising i...

Patch-wise Deep Metric Learning for Unsupervised Low-Dose CT Denoising

The acquisition conditions for low-dose and high-dose CT images are usua...

User Loss -- A Forced-Choice-Inspired Approach to Train Neural Networks directly by User Interaction

In this paper, we investigate whether is it possible to train a neural n...

Low-Dose CT Denoising Using a Structure-Preserving Kernel Prediction Network

Low-dose CT has been a key diagnostic imaging modality to reduce the pot...