Deep neural network ensemble by data augmentation and bagging for skin lesion classification

07/15/2018
by   Manik Goyal, et al.
0

This work summarizes our submission for the Task 3: Disease Classification of ISIC 2018 challenge in Skin Lesion Analysis Towards Melanoma Detection. We use a novel deep neural network (DNN) ensemble architecture introduced by us that can effectively classify skin lesions by using data-augmentation and bagging to address paucity of data and prevent over-fitting. The ensemble is composed of two DNN architectures: Inception-v4 and Inception-Resnet-v2. The DNN architectures are combined in to an ensemble by using a 1×1 convolution for fusion in a meta-learning layer.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset