Deep Multiple Description Coding by Learning Scalar Quantization

11/05/2018
by   Lijun Zhao, et al.
0

In this paper, we propose a deep multiple description coding framework, whose quantizers are adaptively learned via the minimization of multiple description compressive loss. Firstly, our framework is built upon auto-encoder networks, which have multiple description multi-scale dilated encoder network and multiple description decoder networks. Secondly, two entropy estimation networks are learned to estimate the informative amounts of the quantized tensors, which can further supervise the learning of multiple description encoder network to represent the input image delicately. Thirdly, a pair of scalar quantizers accompanied by two importance-indicator maps is automatically learned in an end-to-end self-supervised way. Finally, multiple description structural dis-similarity distance loss is imposed on multiple description decoded images in pixel domain for diversified multiple description generations rather than on feature tensors in feature domain, in addition to multiple description reconstruction loss. Through testing on two commonly used datasets, it is verified that our method is beyond several state-of-the-art multiple description coding approaches in terms of coding efficiency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset