Deep Multimodal Learning for Emotion Recognition in Spoken Language

02/22/2018 ∙ by Yue Gu, et al. ∙ 0

In this paper, we present a novel deep multimodal framework to predict human emotions based on sentence-level spoken language. Our architecture has two distinctive characteristics. First, it extracts the high-level features from both text and audio via a hybrid deep multimodal structure, which considers the spatial information from text, temporal information from audio, and high-level associations from low-level handcrafted features. Second, we fuse all features by using a three-layer deep neural network to learn the correlations across modalities and train the feature extraction and fusion modules together, allowing optimal global fine-tuning of the entire structure. We evaluated the proposed framework on the IEMOCAP dataset. Our result shows promising performance, achieving 60.4

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.