Deep Learning to Assess Glaucoma Risk and Associated Features in Fundus Images

by   Sonia Phene, et al.

Glaucoma is the leading cause of preventable, irreversible blindness world-wide. The disease can remain asymptomatic until severe, and an estimated 50 recommended for early detection and treatment. A cost-effective tool to detect glaucoma could expand healthcare access to a much larger patient population, but such a tool is currently unavailable. We trained a deep learning (DL) algorithm using a retrospective dataset of 58,033 images, assessed for gradability, glaucomatous optic nerve head (ONH) features, and referable glaucoma risk. The resultant algorithm was validated using 2 separate datasets. For referable glaucoma risk, the algorithm had an AUC of 0.940 (95 0.922-0.955) in validation dataset "A" (1,205 images, 1 image/patient; 19 referable where images were adjudicated by panels of fellowship-trained glaucoma specialists) and 0.858 (95 (17,593 images from 9,643 patients; 9.2 Atlanta Veterans Affairs Eye Clinic diabetic teleretinal screening program using clinical referral decisions as the reference standard). Additionally, we found that the presence of vertical cup-to-disc ratio >= 0.7, neuroretinal rim notching, retinal nerve fiber layer defect, and bared circumlinear vessels contributed most to referable glaucoma risk assessment by both glaucoma specialists and the algorithm. Algorithm AUCs ranged between 0.608-0.977 for glaucomatous ONH features. The DL algorithm was significantly more sensitive than 6 of 10 graders, including 2 of 3 glaucoma specialists, with comparable or higher specificity relative to all graders. A DL algorithm trained on fundus images alone can detect referable glaucoma risk with higher sensitivity and comparable specificity to eye care providers.


page 23

page 26

page 27

page 37


Predicting Progression of Age-related Macular Degeneration from Fundus Images using Deep Learning

Background: Patients with neovascular age-related macular degeneration (...

RADNet: Ensemble Model for Robust Glaucoma Classification in Color Fundus Images

Glaucoma is one of the most severe eye diseases, characterized by rapid ...

Glaucoma detection beyond the optic disc: The importance of the peripapillary region using explainable deep learning

Today, a large number of glaucoma cases remain undetected, resulting in ...

Discovering novel systemic biomarkers in photos of the external eye

External eye photos were recently shown to reveal signs of diabetic reti...

Generalizable and Robust Deep Learning Algorithm for Atrial Fibrillation Diagnosis Across Ethnicities, Ages and Sexes

To drive health innovation that meets the needs of all and democratize h...

Accurate and Generalizable Quantitative Scoring of Liver Steatosis from Ultrasound Images via Scalable Deep Learning

Background Aims: Hepatic steatosis is a major cause of chronic liver...

Detecting hidden signs of diabetes in external eye photographs

Diabetes-related retinal conditions can be detected by examining the pos...

Please sign up or login with your details

Forgot password? Click here to reset