Deep Learning Image Recognition for Non-images

06/28/2021 ∙ by Divya Chandrika Kalla, et al. ∙ 145

Powerful deep learning algorithms open an opportunity for solving non-image Machine Learning (ML) problems by transforming these problems to into the image recognition problems. The CPC-R algorithm presented in this chapter converts non-image data into images by visualizing non-image data. Then deep learning CNN algorithms solve the learning problems on these images. The design of the CPC-R algorithm allows preserving all high-dimensional information in 2-D images. The use of pair values mapping instead of single value mapping used in the alternative approaches allows encoding each n-D point with 2 times fewer visual elements. The attributes of an n-D point are divided into pairs of its values and each pair is visualized as 2-D points in the same 2-D Cartesian coordinates. Next, grey scale or color intensity values are assigned to each pair to encode the order of pairs. This is resulted in the heatmap image. The computational experiments with CPC-R are conducted for different CNN architectures, and methods to optimize the CPC-R images showing that the combined CPC-R and deep learning CNN algorithms are able to solve non-image ML problems reaching high accuracy on the benchmark datasets. This chapter expands our prior work by adding more experiments to test accuracy of classification, exploring saliency and informativeness of discovered features to test their interpretability, and generalizing the approach.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 14

page 15

page 18

page 19

page 20

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.