DeepAI AI Chat
Log In Sign Up

Deep Learning for Rain Fade Prediction in Satellite Communications

by   Aidin Ferdowsi, et al.

Line of sight satellite systems, unmanned aerial vehicles, high-altitude platforms, and microwave links that operate on frequency bands such as Ka-band or higher are extremely susceptible to rain. Thus, rain fade forecasting for these systems is critical because it allows the system to switch between ground gateways proactively before a rain fade event to maintain seamless service. Although empirical, statistical, and fade slope models can predict rain fade to some extent, they typically require statistical measurements of rain characteristics in a given area and cannot be generalized to a large scale system. Furthermore, such models typically predict near-future rain fade events but are incapable of forecasting far into the future, making proactive resource management more difficult. In this paper, a deep learning (DL)-based architecture is proposed that forecasts future rain fade using satellite and radar imagery data as well as link power measurements. Furthermore, the data preprocessing and architectural design have been thoroughly explained and multiple experiments have been conducted. Experiments show that the proposed DL architecture outperforms current state-of-the-art machine learning-based algorithms in rain fade forecasting in the near and long term. Moreover, the results indicate that radar data with weather condition information is more effective for short-term prediction, while satellite data with cloud movement information is more effective for long-term predictions.


page 1

page 3

page 5

page 6


WeatherFusionNet: Predicting Precipitation from Satellite Data

The short-term prediction of precipitation is critical in many areas of ...

FORECAST-CLSTM: A New Convolutional LSTM Network for Cloudage Nowcasting

With the highly demand of large-scale and real-time weather service for ...

Smart Weather Forecasting Using Machine Learning:A Case Study in Tennessee

Traditionally, weather predictions are performed with the help of large ...

Intermediate and Future Frame Prediction of Geostationary Satellite Imagery With Warp and Refine Network

Geostationary satellite imagery has applications in climate and weather ...

Deep-Learning-Based Precipitation Nowcasting with Ground Weather Station Data and Radar Data

Recently, many deep-learning techniques have been applied to various wea...