Deep learning for clustering of continuous gravitational wave candidates II: identification of low-SNR candidates

12/08/2020
by   Banafsheh Beheshtipour, et al.
0

Broad searches for continuous gravitational wave signals rely on hierarchies of follow-up stages for candidates above a given significance threshold. An important step to simplify these follow-ups and reduce the computational cost is to bundle together in a single follow-up nearby candidates. This step is called clustering and we investigate carrying it out with a deep learning network. In our first paper [1], we implemented a deep learning clustering network capable of correctly identifying clusters due to large signals. In this paper, a network is implemented that can detect clusters due to much fainter signals. These two networks are complementary and we show that a cascade of the two networks achieves an excellent detection efficiency across a wide range of signal strengths, with a false alarm rate comparable/lower than that of methods currently in use.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro