Deep learning for brake squeal: vibration detection, characterization and prediction

01/02/2020
by   Merten Stender, et al.
0

Despite significant advances in numerical modeling of brake squeal, the majority of industrial research and design is still conducted experimentally. In this work we report on novel strategies for handling data-intensive vibration testings and gaining better insights into brake system vibrations. To this end, we propose machine learning-based methods to detect and characterize vibrations, understand sensitivities and predict brake squeal. Our aim is to illustrate how interdisciplinary approaches can leverage the potential of data science techniques for classical mechanical engineering challenges. In the first part, a deep learning brake squeal detector is developed to identify several classes of typical sounds in vibration recordings. The detection method is rooted in recent computer vision techniques for object detection. It allows to overcome limitations of classical approaches that rely on spectral properties of the recorded vibrations. Results indicate superior detection and characterization quality when compared to state-of-the-art brake squeal detectors. In the second part, deep recurrent neural networks are employed to learn the parametric patterns that determine the dynamic stability of the brake system during operation. Given a set of multivariate loading conditions, the models learn to predict the vibrational behavior of the structure. The validated models represent virtual twins for the squeal behavior of a specific brake system. It is found that those models can predict the occurrence and onset of brake squeal with high accuracy. Hence, the deep learning models can identify the complicated patterns and temporal dependencies in the loading conditions that drive the dynamical structure into regimes of instability. Large data sets from commercial brake system testing are used to train and validate the deep learning models.

READ FULL TEXT

page 4

page 6

page 7

page 10

page 16

page 19

page 28

research
12/19/2019

Metamorphic Testing for Object Detection Systems

Recent advances in deep neural networks (DNNs) have led to object detect...
research
05/16/2023

A Novel Strategy for Improving Robustness in Computer Vision Manufacturing Defect Detection

Visual quality inspection in high performance manufacturing can benefit ...
research
10/14/2020

Data science in economics: comprehensive review of advanced machine learning and deep learning methods

This paper provides a state-of-the-art investigation of advances in data...
research
04/07/2015

An Empirical Evaluation of Deep Learning on Highway Driving

Numerous groups have applied a variety of deep learning techniques to co...
research
08/12/2020

Object Detection for Graphical User Interface: Old Fashioned or Deep Learning or a Combination?

Detecting Graphical User Interface (GUI) elements in GUI images is a dom...
research
12/07/2021

A deep language model to predict metabolic network equilibria

We show that deep learning models, and especially architectures like the...
research
09/29/2021

Sequential Deep Learning Architectures for Anomaly Detection in Virtual Network Function Chains

Software-defined networking (SDN) and network function virtualization (N...

Please sign up or login with your details

Forgot password? Click here to reset