Deep Learning-enabled Detection and Classification of Bacterial Colonies using a Thin Film Transistor (TFT) Image Sensor

05/07/2022
by   Yuzhu Li, et al.
20

Early detection and identification of pathogenic bacteria such as Escherichia coli (E. coli) is an essential task for public health. The conventional culture-based methods for bacterial colony detection usually take >24 hours to get the final read-out. Here, we demonstrate a bacterial colony-forming-unit (CFU) detection system exploiting a thin-film-transistor (TFT)-based image sensor array that saves  12 hours compared to the Environmental Protection Agency (EPA)-approved methods. To demonstrate the efficacy of this CFU detection system, a lensfree imaging modality was built using the TFT image sensor with a sample field-of-view of  10 cm^2. Time-lapse images of bacterial colonies cultured on chromogenic agar plates were automatically collected at 5-minute intervals. Two deep neural networks were used to detect and count the growing colonies and identify their species. When blindly tested with 265 colonies of E. coli and other coliform bacteria (i.e., Citrobacter and Klebsiella pneumoniae), our system reached an average CFU detection rate of 97.3 hours. This TFT-based sensor can be applied to various microbiological detection methods. Due to the large scalability, ultra-large field-of-view, and low cost of the TFT-based image sensors, this platform can be integrated with each agar plate to be tested and disposed of after the automated CFU count. The imaging field-of-view of this platform can be cost-effectively increased to >100 cm^2 to provide a massive throughput for CFU detection using, e.g., roll-to-roll manufacturing of TFTs as used in the flexible display industry.

READ FULL TEXT

page 3

page 4

page 6

page 10

page 11

research
01/29/2020

Early-detection and classification of live bacteria using time-lapse coherent imaging and deep learning

We present a computational live bacteria detection system that periodica...
research
12/29/2020

Advances in deep learning methods for pavement surface crack detection and identification with visible light visual images

Compared to NDT and health monitoring method for cracks in engineering s...
research
03/16/2017

Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning

Having accurate, detailed, and up-to-date information about the location...
research
04/25/2019

Machine Learning For Distributed Acoustic Sensors, Classic versus Image and Deep Neural Networks Approach

Distributed Acoustic Sensing (DAS) using fiber optic cables is a promisi...
research
06/19/2023

Detection of Sensor-To-Sensor Variations using Explainable AI

With the growing concern for air quality and its impact on human health,...
research
08/30/2022

Virtual impactor-based label-free bio-aerosol detection using holography and deep learning

Exposure to bio-aerosols such as mold spores and pollen can lead to adve...
research
12/01/2017

Rapid point-of-care Hemoglobin measurement through low-cost optics and Convolutional Neural Network based validation

A low-cost, robust, and simple mechanism to measure hemoglobin would pla...

Please sign up or login with your details

Forgot password? Click here to reset