Deep Learning-based Resource Allocation for Infrastructure Resilience

07/12/2020
by   Siavash Alemzadeh, et al.
0

From an optimization point of view, resource allocation is one of the cornerstones of research for addressing limiting factors commonly arising in applications such as power outages and traffic jams. In this paper, we take a data-driven approach to estimate an optimal nodal restoration sequence for immediate recovery of the infrastructure networks after natural disasters such as earthquakes. We generate data from td-INDP, a high-fidelity simulator of optimal restoration strategies for interdependent networks, and employ deep neural networks to approximate those strategies. Despite the fact that the underlying problem is NP-complete, the restoration sequences obtained by our method are observed to be nearly optimal. In addition, by training multiple models—the so-called estimators—for a variety of resource availability levels, our proposed method balances a trade-off between resource utilization and restoration time. Decision-makers can use our trained models to allocate resources more efficiently after contingencies, and in turn, improve the community resilience. Besides their predictive power, such trained estimators unravel the effect of interdependencies among different nodal functionalities in the restoration strategies. We showcase our methodology by the real-world interdependent infrastructure of Shelby County, TN.

READ FULL TEXT
06/06/2021

Multi-agent Modeling of Hazard-Household-Infrastructure Nexus for Equitable Resilience Assessment

To enable integrating social equity considerations in infrastructure res...
08/03/2020

Modeling of Lifeline Infrastructure Restoration Using Empirical Quantitative Data

Disaster recovery is widely regarded as the least understood phase of th...
11/07/2020

Data–driven Image Restoration with Option–driven Learning for Big and Small Astronomical Image Datasets

Image restoration methods are commonly used to improve the quality of as...
07/27/2020

Resource Allocation via Model-Free Deep Learning in Free Space Optical Networks

This paper investigates the general problem of resource allocation for m...
10/01/2019

Decision Automation for Electric Power Network Recovery

Critical infrastructure systems such as electric power networks, water n...
06/17/2021

Unsupervised Resource Allocation with Graph Neural Networks

We present an approach for maximizing a global utility function by learn...