Deep learning-based reduced-order methods for fast transient dynamics

12/15/2022
by   Martina Cracco, et al.
0

In recent years, large-scale numerical simulations played an essential role in estimating the effects of explosion events in urban environments, for the purpose of ensuring the security and safety of cities. Such simulations are computationally expensive and, often, the time taken for one single computation is large and does not permit parametric studies. The aim of this work is therefore to facilitate real-time and multi-query calculations by employing a non-intrusive Reduced Order Method (ROM). We propose a deep learning-based (DL) ROM scheme able to deal with fast transient dynamics. In the case of blast waves, the parametrised PDEs are time-dependent and non-linear. For such problems, the Proper Orthogonal Decomposition (POD), which relies on a linear superposition of modes, cannot approximate the solutions efficiently. The piecewise POD-DL scheme developed here is a local ROM based on time-domain partitioning and a first dimensionality reduction obtained through the POD. Autoencoders are used as a second and non-linear dimensionality reduction. The latent space obtained is then reconstructed from the time and parameter space through deep forward neural networks. The proposed scheme is applied to an example consisting of a blast wave propagating in air and impacting on the outside of a building. The efficiency of the deep learning-based ROM in approximating the time-dependent pressure field is shown.

READ FULL TEXT

page 10

page 12

research
01/28/2021

POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition

Deep learning-based reduced order models (DL-ROMs) have been recently pr...
research
01/12/2020

A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs

Traditional reduced order modeling techniques such as the reduced basis ...
research
01/24/2023

A two stages Deep Learning Architecture for Model Reduction of Parametric Time-Dependent Problems

Parametric time-dependent systems are of a crucial importance in modelin...
research
07/24/2022

FastSVD-ML-ROM: A Reduced-Order Modeling Framework based on Machine Learning for Real-Time Applications

Digital twins have emerged as a key technology for optimizing the perfor...
research
05/14/2023

Small-data Reduced Order Modeling of Chaotic Dynamics through SyCo-AE: Synthetically Constrained Autoencoders

Data-driven reduced order modeling of chaotic dynamics can result in sys...
research
11/11/2021

Solving time-dependent parametric PDEs by multiclass classification-based reduced order model

In this paper, we propose a network model, the multiclass classification...

Please sign up or login with your details

Forgot password? Click here to reset