Deep Learning-Based Quantization of L-Values for Gray-Coded Modulation

06/18/2019
by   Marius Arvinte, et al.
0

In this work, a deep learning-based quantization scheme for log-likelihood ratio (L-value) storage is introduced. We analyze the dependency between the average magnitude of different L-values from the same quadrature amplitude modulation (QAM) symbol and show they follow a consistent ordering. Based on this we design a deep autoencoder that jointly compresses and separately reconstructs each L-value, allowing the use of a weighted loss function that aims to more accurately reconstructs low magnitude inputs. Our method is shown to be competitive with state-of-the-art maximum mutual information quantization schemes, reducing the required memory footprint by a ratio of up to two and a loss of performance smaller than 0.1 dB with less than two effective bits per L-value or smaller than 0.04 dB with 2.25 effective bits. We experimentally show that our proposed method is a universal compression scheme in the sense that after training on an LDPC-coded Rayleigh fading scenario we can reuse the same network without further training on other channel models and codes while preserving the same performance benefits.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset