Deep Learning-based Prediction of Electrical Arrhythmia Circuits from Cardiac Motion: An In-Silico Study

05/13/2023
by   Jan Lebert, et al.
0

The heart's contraction is caused by electrical excitation which propagates through the heart muscle. It was recently shown that the electrical excitation can be computed from the contractile motion of a simulated piece of heart muscle tissue using deep learning. In cardiac electrophysiology, a primary diagnostic goal is to identify electrical triggers or drivers of heart rhythm disorders. However, using electrical mapping techniques, it is currently impossible to map the three-dimensional morphology of the electrical waves throughout the entire heart muscle, especially during ventricular arrhythmias. Therefore, the approach to calculate or predict electrical excitation from the hearts motion could be a promising alternative diagnostic approach. Here, we demonstrate in computer simulations that it is possible to predict three-dimensional electrical wave dynamics from ventricular deformation mechanics using deep learning. We performed thousands of simulations of electromechanical activation dynamics in ventricular geometries and used the data to train a neural network which subsequently predicts the three-dimensional electrical wave pattern that caused the deformation. We demonstrate that, next to focal wave patterns, even complicated three-dimensional electrical wave patterns can be reconstructed, even if the network has never seen the particular arrhythmia. We show that the deep learning model has the ability to generalize by training it on data generated with the smoothed particle hydrodynamics (SPH) method and subsequently applying it to data generated with the finite element method (FEM). Predictions can be performed in the presence of scars and with significant heterogeneity. Our results suggest that, deep neural networks could be used to calculate intramural action potential wave patterns from imaging data of the motion of the heart muscle.

READ FULL TEXT

page 2

page 4

page 6

page 9

page 10

page 11

page 12

page 13

research
09/09/2022

Reconstruction of Three-dimensional Scroll Wave Chaos in Opaque and Transparent Excitable Media using Deep Neural Networks

Scroll wave chaos is thought to underlie life-threatening ventricular fi...
research
09/22/2021

Rotor Localization and Phase Mapping of Cardiac Excitation Waves using Deep Neural Networks

The analysis of electrical impulse phenomena in cardiac muscle tissue is...
research
06/20/2021

Fast PDN Impedance Prediction Using Deep Learning

Modeling and simulating a power distribution network (PDN) for printed c...
research
11/11/2020

A deep-learning classifier for cardiac arrhythmias

We report on a method that classifies heart beats according to a set of ...
research
05/31/2022

Deformation of the myocardium during CPR

Cardiopulmonary resuscitation (CPR) is an emergency procedure performed ...
research
11/10/2021

A coupling strategy for a 3D-1D model of the cardiovascular system to study the effects of pulse wave propagation on cardiac function

The impact of increased stiffness and pulsatile load on the circulation ...
research
05/20/2020

The hidden waves in the ECG uncovered: A multicomponent model for the Cardiac Rhythm

A novel approach for analysing cardiac rhythm data is presented in this ...

Please sign up or login with your details

Forgot password? Click here to reset