Deep learning based inverse method for layout design

06/07/2018
by   Yujie Zhang, et al.
0

Layout design with complex constraints is a challenging problem to solve due to the non-uniqueness of the solution and the difficulties in incorporating the constraints into the conventional optimization-based methods. In this paper, we propose a design method based on the recently developed machine learning technique, Variational Autoencoder (VAE). We utilize the learning capability of the VAE to learn the constraints and the generative capability of the VAE to generate design candidates that automatically satisfy all the constraints. As such, no constraints need to be imposed during the design stage. In addition, we show that the VAE network is also capable of learning the underlying physics of the design problem, leading to an efficient design tool that does not need any physical simulation once the network is constructed. We demonstrated the performance of the method on two cases: inverse design of surface diffusion induced morphology change and mask design for optical microlithography.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset