Deep Learning-based Image Super-Resolution Considering Quantitative and Perceptual Quality

09/13/2018
by   Jun-Ho Choi, et al.
0

Recently, it has been shown that in super-resolution, there exists a tradeoff relationship between the quantitative and perceptual quality of super-resolved images, which correspond to the similarity to the ground-truth images and the naturalness, respectively. In this paper, we propose a novel super-resolution method that can improve the perceptual quality of the upscaled images while preserving the conventional quantitative performance. The proposed method employs a deep network for multi-pass upscaling in company with a discriminator network and two quantitative score predictor networks. Experimental results demonstrate that the proposed method achieves a good balance of the quantitative and perceptual quality, showing more satisfactory results than existing methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset