Deep Learning based Estimation of Weaving Target Maneuvers

06/13/2018
by   Vitaly Shalumov, et al.
0

In target tracking, the estimation of an unknown weaving target frequency is crucial for improving the miss distance. The estimation process is commonly carried out in a Kalman framework. The objective of this paper is to examine the potential of using neural networks in target tracking applications. To that end, we propose estimating the weaving frequency using deep neural networks, instead of classical Kalman framework based estimation. Particularly, we focus on the case where a set of possible constant target frequencies is known. Several neural network architectures, requiring low computational resources were designed to estimate the unknown frequency out of the known set of frequencies. The proposed approach performance is compared with the multiple model adaptive estimation algorithm. Simulation results show that in the examined scenarios, deep neural network outperforms multiple model adaptive estimation in terms of accuracy and the amount of required measurements to convergence.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset