DeepAI AI Chat
Log In Sign Up

Deep Learning Based Cardiac MRI Segmentation: Do We Need Experts?

by   Youssef Skandarani, et al.
Université de Bourgogne

Deep learning methods are the de-facto solutions to a multitude of medical image analysis tasks. Cardiac MRI segmentation is one such application which, like many others, requires a large number of annotated data so a trained network can generalize well. Unfortunately, the process of having a large number of manually curated images by medical experts is both slow and utterly expensive. In this paper, we set out to explore whether expert knowledge is a strict requirement for the creation of annotated datasets that machine learning can successfully train on. To do so, we gauged the performance of three segmentation models, namely U-Net, Attention U-Net, and ENet, trained with different loss functions on expert and non-expert groundtruth for cardiac cine-MRI segmentation. Evaluation was done with classic segmentation metrics (Dice index and Hausdorff distance) as well as clinical measurements, such as the ventricular ejection fractions and the myocardial mass. Results reveal that generalization performances of a segmentation neural network trained on non-expert groundtruth data is, to all practical purposes, as good as on expert groundtruth data, in particular when the non-expert gets a decent level of training, highlighting an opportunity for the efficient and cheap creation of annotations for cardiac datasets.


page 4

page 5

page 10


ν-net: Deep Learning for Generalized Biventricular Cardiac Mass and Function Parameters

Background: Cardiac MRI derived biventricular mass and function paramete...

U-Net-and-a-half: Convolutional network for biomedical image segmentation using multiple expert-driven annotations

Development of deep learning systems for biomedical segmentation often r...

Extraction of volumetric indices from echocardiography: which deep learning solution for clinical use?

Deep learning-based methods have spearheaded the automatic analysis of e...

Understanding Human Judgments of Causality

Discriminating between causality and correlation is a major problem in m...

Building Disease Detection Algorithms with Very Small Numbers of Positive Samples

Although deep learning can provide promising results in medical image an...