Deep Learning Based 3D Point Cloud Regression for Estimating Forest Biomass

12/21/2021
by   Stefan Oehmcke, et al.
6

Knowledge of forest biomass stocks and their development is important for implementing effective climate change mitigation measures. It is needed for studying the processes driving af-, re-, and deforestation and is a prerequisite for carbon-accounting. Remote sensing using airborne LiDAR can be used to measure vegetation biomass at large scale. We present deep learning systems for predicting wood volume, above-ground biomass (AGB), and subsequently carbon directly from 3D LiDAR point cloud data. We devise different neural network architectures for point cloud regression and evaluate them on remote sensing data of areas for which AGB estimates have been obtained from field measurements in a national forest inventory. Our adaptation of Minkowski convolutional neural networks for regression gave the best results. The deep neural networks produced significantly more accurate wood volume, AGB, and carbon estimates compared to state-of-the-art approaches operating on basic statistics of the point clouds, and we expect this finding to have a strong impact on LiDAR-based analyses of terrestrial ecosystem dynamics.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 2

page 4

page 8

page 13

page 14

08/23/2019

A Review of Point Cloud Semantic Segmentation

3D Point Cloud Semantic Segmentation (PCSS) is attracting increasing int...
05/17/2022

High-resolution landscape-scale biomass mapping using a spatiotemporal patchwork of LiDAR coverages

Estimating forest aboveground biomass at fine spatial scales has become ...
04/05/2020

Learning and Recognizing Archeological Features from LiDAR Data

We present a remote sensing pipeline that processes LiDAR (Light Detecti...
01/06/2021

Predicting Forest Fire Using Remote Sensing Data And Machine Learning

Over the last few decades, deforestation and climate change have caused ...
04/14/2022

CroCo: Cross-Modal Contrastive learning for localization of Earth Observation data

It is of interest to localize a ground-based LiDAR point cloud on remote...
01/22/2021

Machine Learning in LiDAR 3D point clouds

LiDAR point clouds contain measurements of complicated natural scenes an...
03/05/2021

Global canopy height estimation with GEDI LIDAR waveforms and Bayesian deep learning

NASA's Global Ecosystem Dynamics Investigation (GEDI) is a key climate m...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.