Deep Learning Approaches for Forecasting Strawberry Yields and Prices Using Satellite Images and Station-Based Soil Parameters

02/17/2021 ∙ by Mohita Chaudhary, et al. ∙ 0

Computational tools for forecasting yields and prices for fresh produce have been based on traditional machine learning approaches or time series modelling. We propose here an alternate approach based on deep learning algorithms for forecasting strawberry yields and prices in Santa Barbara county, California. Building the proposed forecasting model comprises three stages: first, the station-based ensemble model (ATT-CNN-LSTM-SeriesNet_Ens) with its compound deep learning components, SeriesNet with Gated Recurrent Unit (GRU) and Convolutional Neural Network LSTM with Attention layer (Att-CNN-LSTM), are trained and tested using the station-based soil temperature and moisture data of SantaBarbara as input and the corresponding strawberry yields or prices as output. Secondly, the remote sensing ensemble model (SIM_CNN-LSTM_Ens), which is an ensemble model of Convolutional NeuralNetwork LSTM (CNN-LSTM) models, is trained and tested using satellite images of the same county as input mapped to the same yields and prices as output. These two ensembles forecast strawberry yields and prices with minimal forecasting errors and highest model correlation for five weeks ahead forecasts.Finally, the forecasts of these two models are ensembled to have a final forecasted value for yields and prices by introducing a voting ensemble. Based on an aggregated performance measure (AGM), it is found that this voting ensemble not only enhances the forecasting performance by 5 Deep Learning (DL) ensemble model found in literature by 33 yields and 21

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 8

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.