Deep Learning Analysis of Cardiac MRI in Legacy Datasets: Multi-Ethnic Study of Atherosclerosis

10/28/2021
by   Avan Suinesiaputra, et al.
37

The shape and motion of the heart provide essential clues to understanding the mechanisms of cardiovascular disease. With the advent of large-scale cardiac imaging data, statistical atlases become a powerful tool to provide automated and precise quantification of the status of patient-specific heart geometry with respect to reference populations. The Multi-Ethnic Study of Atherosclerosis (MESA), begun in 2000, was the first large cohort study to incorporate cardiovascular MRI in over 5000 participants, and there is now a wealth of follow-up data over 20 years. Building a machine learning based automated analysis is necessary to extract the additional imaging information necessary for expanding original manual analyses. However, machine learning tools trained on MRI datasets with different pulse sequences fail on such legacy datasets. Here, we describe an automated atlas construction pipeline using deep learning methods applied to the legacy cardiac MRI data in MESA. For detection of anatomical cardiac landmark points, a modified VGGNet convolutional neural network architecture was used in conjunction with a transfer learning sequence between two-chamber, four-chamber, and short-axis MRI views. A U-Net architecture was used for detection of the endocardial and epicardial boundaries in short axis images. Both network architectures resulted in good segmentation and landmark detection accuracies compared with inter-observer variations. Statistical relationships with common risk factors were similar between atlases derived from automated vs manual annotations. The automated atlas can be employed in future studies to examine the relationships between cardiac morphology and future events.

READ FULL TEXT

page 13

page 14

page 16

page 17

page 21

research
10/23/2020

Estimation of Cardiac Valve Annuli Motion with Deep Learning

Valve annuli motion and morphology, measured from non-invasive imaging, ...
research
11/03/2017

Computationally efficient cardiac views projection using 3D Convolutional Neural Networks

4D Flow is an MRI sequence which allows acquisition of 3D images of the ...
research
08/14/2020

Landmark detection in Cardiac Magnetic Resonance Imaging Using A Convolutional Neural Network

Purpose: To develop a convolutional neural network (CNN) solution for ro...
research
11/15/2020

Studying Robustness of Semantic Segmentation under Domain Shift in cardiac MRI

Cardiac magnetic resonance imaging (cMRI) is an integral part of diagnos...
research
08/29/2017

Fused Segmentation of Geometric Models for Myocardium and Coronary Artery via Medial Axis

Coronary arteries and their branches supply blood to myocardium. The obs...
research
08/25/2019

Adversarial Convolutional Networks with Weak Domain-Transfer for Multi-Sequence Cardiac MR Images Segmentation

Analysis and modeling of the ventricles and myocardium are important in ...

Please sign up or login with your details

Forgot password? Click here to reset