Deep-Learning-Aided Alternating Least Squares for Tensor CP Decomposition and Its Application to Massive MIMO Channel Estimation

05/23/2023
by   Xiao Gong, et al.
0

CANDECOMP/PARAFAC (CP) decomposition is the mostly used model to formulate the received tensor signal in a multi-domain massive multiple-input multiple-output (MIMO) system, as the receiver generally sums the components from different paths or users. To achieve accurate and low-latency channel estimation, good and fast CP decomposition algorithms are desired. The CP alternating least squares (CPALS) is the workhorse algorithm for calculating the CP decomposition. However, its performance depends on the initializations, and good starting values can lead to more efficient solutions. Existing initialization strategies are decoupled from the CPALS and are not necessarily favorable for solving the CP decomposition. To enhance the algorithm's speed and accuracy, this paper proposes a deep-learning-aided CPALS (DL-CPALS) method that uses a deep neural network (DNN) to generate favorable initializations. The proposed DL-CPALS integrates the DNN and CPALS to a model-based deep learning paradigm, where it trains the DNN to generate an initialization that facilitates fast and accurate CP decomposition. Moreover, benefiting from the CP low-rankness, the proposed method is trained using noisy data and does not require paired clean data. The proposed DL-CPALS is applied to millimeter wave MIMO orthogonal frequency division multiplexing (mmWave MIMO-OFDM) channel estimation. Experimental results demonstrate the significant improvements of the proposed method in terms of both speed and accuracy for CP decomposition and channel estimation.

READ FULL TEXT
research
10/28/2019

Knowledge-Aided Deep Learning for Beamspace Channel Estimation in Millimeter-Wave Massive MIMO Systems

Millimeter-wave massive multiple-input multiple-output (MIMO) can use a ...
research
09/05/2018

Massive MIMO Channel Estimation for Millimeter Wave Systems via Matrix Completion

Millimeter Wave (mmWave) massive Multiple Input Multiple Output (MIMO) s...
research
08/01/2021

CNN based Channel Estimation using NOMA for mmWave Massive MIMO System

Non-Orthogonal Multiple Access (NOMA) schemes are being actively explore...
research
08/21/2021

An Attention-Aided Deep Learning Framework for Massive MIMO Channel Estimation

Channel estimation is one of the key issues in practical massive multipl...
research
09/06/2021

Learning to Perform Downlink Channel Estimation in Massive MIMO Systems

We study downlink (DL) channel estimation in a multi-cell Massive multip...
research
11/15/2022

Blind Performance Prediction for Deep Learning Based Ultra-Massive MIMO Channel Estimation

Reliability is of paramount importance for the physical layer of wireles...
research
03/12/2019

Artificial Intelligence-aided Receiver for A CP-Free OFDM System: Design, Simulation, and Experimental Test

Orthogonal frequency division multiplexing (OFDM), usually with sufficie...

Please sign up or login with your details

Forgot password? Click here to reset