Deep Identity-aware Transfer of Facial Attributes

10/18/2016
by   Mu Li, et al.
0

This paper presents a Deep convolutional network model for Identity-Aware Transfer (DIAT) of facial attributes. Given the source input image and the reference attribute, DIAT aims to generate a facial image (i.e., target image) that not only owns the reference attribute but also keep the same or similar identity to the input image. We develop a two-stage scheme to transfer the input image to each reference attribute label. A feed-forward transform network is first trained by combining perceptual identity-aware loss and GAN-based attribute loss, and a face enhancement network is then introduced to improve the visual quality. We further define perceptual identity loss on the convolutional feature maps of the attribute discriminator, resulting in a DIAT-A model. Our DIAT and DIAT-A models can provide a unified solution for several representative facial attribute transfer tasks such as expression transfer, accessory removal, age progression, and gender transfer. The experimental results validate their effectiveness. Even for some identity-related attribute (e.g., gender), our DIAT-A can obtain visually impressive results by changing the attribute while retaining most identity features of the source image.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset