Deep Generative Models for Distribution-Preserving Lossy Compression

05/28/2018 ∙ by Michael Tschannen, et al. ∙ 2

We propose and study the problem of distribution-preserving lossy compression. Motivated by the recent advances in extreme image compression which allow to maintain artifact-free reconstructions even at very low bitrates, we propose to optimize the rate-distortion tradeoff under the constraint that the reconstructed samples follow the distribution of the training data. Such a compression system recovers both ends of the spectrum: On one hand, at zero bitrate it learns a generative model of the data, and at high enough bitrates it achieves perfect reconstruction. Furthermore, for intermediate bitrates it smoothly interpolates between matching the distribution of the training data and perfectly reconstructing the training samples. We study several methods to approximately solve the proposed optimization problem, including a novel combination of Wasserstein GAN and Wasserstein Autoencoder, and present strong theoretical and empirical results for the proposed compression system.



There are no comments yet.


page 15

page 16

page 17

page 18

page 20

page 22

page 23

page 24

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.