Deep Function Machines: Generalized Neural Networks for Topological Layer Expression

12/14/2016
by   William H. Guss, et al.
0

In this paper we propose a generalization of deep neural networks called deep function machines (DFMs). DFMs act on vector spaces of arbitrary (possibly infinite) dimension and we show that a family of DFMs are invariant to the dimension of input data; that is, the parameterization of the model does not directly hinge on the quality of the input (eg. high resolution images). Using this generalization we provide a new theory of universal approximation of bounded non-linear operators between function spaces. We then suggest that DFMs provide an expressive framework for designing new neural network layer types with topological considerations in mind. Finally, we introduce a novel architecture, RippLeNet, for resolution invariant computer vision, which empirically achieves state of the art invariance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset