Deep Feature Rotation for Multimodal Image Style Transfer

02/09/2022
by   Son Truong Nguyen, et al.
24

Recently, style transfer is a research area that attracts a lot of attention, which transfers the style of an image onto a content target. Extensive research on style transfer has aimed at speeding up processing or generating high-quality stylized images. Most approaches only produce an output from a content and style image pair, while a few others use complex architectures and can only produce a certain number of outputs. In this paper, we propose a simple method for representing style features in many ways called Deep Feature Rotation (DFR), while not only producing diverse outputs but also still achieving effective stylization compared to more complex methods. Our approach is representative of the many ways of augmentation for intermediate feature embedding without consuming too much computational expense. We also analyze our method by visualizing output in different rotation weights. Our code is available at https://github.com/sonnguyen129/deep-feature-rotation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro