Deep Energy: Using Energy Functions for Unsupervised Training of DNNs

05/31/2018
by   Alona Golts, et al.
0

The success of deep learning has been due in no small part to the availability of large annotated datasets. Thus, a major bottleneck in the current learning pipeline is the human annotation of data, which can be quite time consuming. For a given problem setting, we aim to circumvent this issue via the use of an externally specified energy function appropriate for that setting; we call this the "Deep Energy" approach. We show how to train a network on an entirely unlabelled dataset using such an energy function, and apply this general technique to learn CNNs for two specific tasks: seeded segmentation and image matting. Once the network parameters have been learned, we obtain a high-quality solution in a fast feed-forward style, without the need to repeatedly optimize the energy function for each image.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset