Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation

06/18/2020
by   Jungo Kasai, et al.
0

State-of-the-art neural machine translation models generate outputs autoregressively, where every step conditions on the previously generated tokens. This sequential nature causes inherent decoding latency. Non-autoregressive translation techniques, on the other hand, parallelize generation across positions and speed up inference at the expense of translation quality. Much recent effort has been devoted to non-autoregressive methods, aiming for a better balance between speed and quality. In this work, we re-examine the trade-off and argue that transformer-based autoregressive models can be substantially sped up without loss in accuracy. Specifically, we study autoregressive models with encoders and decoders of varied depths. Our extensive experiments show that given a sufficiently deep encoder, a one-layer autoregressive decoder yields state-of-the-art accuracy with comparable latency to strong non-autoregressive models. Our findings suggest that the latency disadvantage for autoregressive translation has been overestimated due to a suboptimal choice of layer allocation, and we provide a new speed-quality baseline for future research toward fast, accurate translation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro