Deep Diffusion Models for Robust Channel Estimation
Channel estimation is a critical task in digital communications that greatly impacts end-to-end system performance. In this work, we introduce a novel approach for multiple-input multiple-output (MIMO) channel estimation using deep diffusion models. Our method uses a deep neural network that is trained to estimate the gradient of the log-likelihood of wireless channels at any point in high-dimensional space, and leverages this model to solve channel estimation via posterior sampling. We train a deep diffusion model on channel realizations from the CDL-D model for two antenna spacings and show that the approach leads to competitive in- and out-of-distribution performance when compared to generative adversarial network (GAN) and compressed sensing (CS) methods. When tested on CDL-C channels which are never seen during training or fine-tuned on, our approach leads to end-to-end coded performance gains of up to 3 dB compared to CS methods and losses of only 0.5 dB compared to ideal channel knowledge. To encourage open and reproducible research, our source code is available at https://github.com/utcsilab/diffusion-channels .
READ FULL TEXT