Deep D-bar: Real time Electrical Impedance Tomography Imaging with Deep Neural Networks

11/08/2017
by   Sarah Jane Hamilton, et al.
0

The mathematical problem for Electrical Impedance Tomography (EIT) is a highly nonlinear ill-posed inverse problem requiring carefully designed reconstruction procedures to ensure reliable image generation. D-bar methods are based on a rigorous mathematical analysis and provide robust direct reconstructions by using a low-pass filtering of the associated nonlinear Fourier data. Similarly to low-pass filtering of linear Fourier data, only using low frequencies in the image recovery process results in blurred images lacking sharp features such as clear organ boundaries. Convolutional Neural Networks provide a powerful framework for post-processing such convolved direct reconstructions. In this study, we demonstrate that these CNN techniques lead to sharp and reliable reconstructions even for the highly nonlinear inverse problem of EIT. The network is trained on data sets of simulated examples and then applied to experimental data without the need to perform an additional transfer training. Results are presented on experimental EIT data from the ACT4 and KIT4 EIT systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset