Deep Contextual Multi-armed Bandits
Contextual multi-armed bandit problems arise frequently in important industrial applications. Existing solutions model the context either linearly, which enables uncertainty driven (principled) exploration, or non-linearly, by using epsilon-greedy exploration policies. Here we present a deep learning framework for contextual multi-armed bandits that is both non-linear and enables principled exploration at the same time. We tackle the exploration vs. exploitation trade-off through Thompson sampling by exploiting the connection between inference time dropout and sampling from the posterior over the weights of a Bayesian neural network. In order to adjust the level of exploration automatically as more data is made available to the model, the dropout rate is learned rather than considered a hyperparameter. We demonstrate that our approach substantially reduces regret on two tasks (the UCI Mushroom task and the Casino Parity task) when compared to 1) non-contextual bandits, 2) epsilon-greedy deep contextual bandits, and 3) fixed dropout rate deep contextual bandits. Our approach is currently being applied to marketing optimization problems at HubSpot.
READ FULL TEXT