DeepAI AI Chat
Log In Sign Up

Deep Confidence Guided Distance for 3D Partial Shape Registration

by   Dvir Ginzburg, et al.
Tel Aviv University

We present a novel non-iterative learnable method for partial-to-partial 3D shape registration. The partial alignment task is extremely complex, as it jointly tries to match between points and identify which points do not appear in the corresponding shape, causing the solution to be non-unique and ill-posed in most cases. Until now, two principal methodologies have been suggested to solve this problem: sample a subset of points that are likely to have correspondences or perform soft alignment between the point clouds and try to avoid a match to an occluded part. These heuristics work when the partiality is mild or when the transformation is small but fails for severe occlusions or when outliers are present. We present a unique approach named Confidence Guided Distance Network (CGD-net), where we fuse learnable similarity between point embeddings and spatial distance between point clouds, inducing an optimized solution for the overlapping points while ignoring parts that only appear in one of the shapes. The point feature generation is done by a self-supervised architecture that repels far points to have different embeddings, therefore succeeds to align partial views of shapes, even with excessive internal symmetries or acute rotations. We compare our network to recently presented learning-based and axiomatic methods and report a fundamental boost in performance.


Deep Weighted Consensus: Dense correspondence confidence maps for 3D shape registration

We present a new paradigm for rigid alignment between point clouds based...

PRNet: Self-Supervised Learning for Partial-to-Partial Registration

We present a simple, flexible, and general framework titled Partial Regi...

Consistent Two-Flow Network for Tele-Registration of Point Clouds

Rigid registration of partial observations is a fundamental problem in v...

DeepBBS: Deep Best Buddies for Point Cloud Registration

Recently, several deep learning approaches have been proposed for point ...

UTOPIC: Uncertainty-aware Overlap Prediction Network for Partial Point Cloud Registration

High-confidence overlap prediction and accurate correspondences are crit...

Articulated Shape Matching Using Laplacian Eigenfunctions and Unsupervised Point Registration

Matching articulated shapes represented by voxel-sets reduces to maximal...

Self-Similarity Based Time Warping

In this work, we explore the problem of aligning two time-ordered point ...