Deep Anomaly Detection with Outlier Exposure

12/11/2018
by   Dan Hendrycks, et al.
8

It is important to detect and handle anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data commonly used by deep learning systems are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This approach enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments in vision and natural language processing settings, we find that Outlier Exposure significantly improves the detection performance. Our approach is even applicable to density estimation models and anomaly detectors for large-scale images. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset