Deep ahead-of-threat virtual patching

07/16/2020 ∙ by Fady Copty, et al. ∙ 0

Many applications have security vulnerabilities that can be exploited. It is practically impossible to find all of them due to the NP-complete nature of the testing problem. Security solutions provide defenses against these attacks through continuous application testing, fast-patching of vulnerabilities, automatic deployment of patches, and virtual patching detection techniques deployed in network and endpoint security tools. These techniques are limited by the need to find vulnerabilities before the black-hats. We propose an innovative technique to virtually patch vulnerabilities before they are found. We leverage testing techniques for supervised-learning data generation, and show how artificial intelligence techniques can use this data to create predictive deep neural-network models that read an application's input and predict in real time whether it is a potential malicious input. We set up an ahead-of-threat experiment in which we generated data on old versions of an application, and then evaluated the predictive model accuracy on vulnerabilities found years later. Our experiments show ahead-of-threat detection on LibXML2 and LibTIFF vulnerabilities with 91.3 respectively. We expect to continue work on this field of research and provide ahead-of-threat virtual patching for more libraries. Success in this research can change the current state of endless racing after application vulnerabilities and put the defenders one step ahead of the attackers



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.