Deep Adversarial Inconsistent Cognitive Sampling for Multi-view Progressive Subspace Clustering

01/11/2021 ∙ by Renhao Sun, et al. ∙ 0

Deep multi-view clustering methods have achieved remarkable performance. However, all of them failed to consider the difficulty labels (uncertainty of ground-truth for training samples) over multi-view samples, which may result into a nonideal clustering network for getting stuck into poor local optima during training process; worse still, the difficulty labels from multi-view samples are always inconsistent, such fact makes it even more challenging to handle. In this paper, we propose a novel Deep Adversarial Inconsistent Cognitive Sampling (DAICS) method for multi-view progressive subspace clustering. A multiview binary classification (easy or difficult) loss and a feature similarity loss are proposed to jointly learn a binary classifier and a deep consistent feature embedding network, throughout an adversarial minimax game over difficulty labels of multiview consistent samples. We develop a multi-view cognitive sampling strategy to select the input samples from easy to difficult for multi-view clustering network training. However, the distributions of easy and difficult samples are mixed together, hence not trivial to achieve the goal. To resolve it, we define a sampling probability with theoretical guarantee. Based on that, a golden section mechanism is further designed to generate a sample set boundary to progressively select the samples with varied difficulty labels via a gate unit, which is utilized to jointly learn a multi-view common progressive subspace and clustering network for more efficient clustering. Experimental results on four real-world datasets demonstrate the superiority of DAICS over the state-of-the-art methods.



There are no comments yet.


page 1

page 11

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.