Deep Adaptive Input Normalization for Price Forecasting using Limit Order Book Data

02/21/2019
by   Nikolaos Passalis, et al.
0

Deep Learning (DL) models can be used to tackle time series analysis tasks with great success. However, the performance of DL models can degenerate rapidly if the data are not appropriately normalized. This issue is even more apparent when DL is used for financial time series forecasting tasks, where the non-stationary and multimodal nature of the data pose significant challenges and severely affect the performance of DL models. In this work, a simple, yet effective, neural layer, that is capable of adaptively normalizing the input time series, while taking into account the distribution of the data, is proposed. The proposed layer is trained in an end-to-end fashion using back-propagation and can lead to significant performance improvements. The effectiveness of the proposed method is demonstrated using a large-scale limit order book dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset