Deep Active Learning for Remote Sensing Object Detection

03/17/2020 ∙ by Zhenshen Qu, et al. ∙ 0

Recently, CNN object detectors have achieved high accuracy on remote sensing images but require huge labor and time costs on annotation. In this paper, we propose a new uncertainty-based active learning which can select images with more information for annotation and detector can still reach high performance with a fraction of the training images. Our method not only analyzes objects' classification uncertainty to find least confident objects but also considers their regression uncertainty to declare outliers. Besides, we bring out two extra weights to overcome two difficulties in remote sensing datasets, class-imbalance and difference in images' objects amount. We experiment our active learning algorithm on DOTA dataset with CenterNet as object detector. We achieve same-level performance as full supervision with only half images. We even override full supervision with 55 confident images.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.