DEEMD: Drug Efficacy Estimation against SARS-CoV-2 based on cell Morphology with Deep multiple instance learning

05/10/2021
by   M. Sadegh Saberian, et al.
0

Drug repurposing can accelerate the identification of effective compounds for clinical use against SARS-CoV-2, with the advantage of pre-existing clinical safety data and an established supply chain. RNA viruses such as SARS-CoV-2 manipulate cellular pathways and induce reorganization of subcellular structures to support their life cycle. These morphological changes can be quantified using bioimaging techniques. In this work, we developed DEEMD: a computational pipeline using deep neural network models within a multiple instance learning (MIL) framework, to identify putative treatments effective against SARS-CoV-2 based on morphological analysis of the publicly available RxRx19a dataset. This dataset consists of fluorescence microscopy images of SARS-CoV-2 non-infected cells and infected cells, with and without drug treatment. DEEMD first extracts discriminative morphological features to generate cell morphological profiles from the non-infected and infected cells. These morphological profiles are then used in a statistical model to estimate the applied treatment efficacy on infected cells based on similarities to non-infected cells. DEEMD is capable of localizing infected cells via weak supervision without any expensive pixel-level annotations. DEEMD identifies known SARS-CoV-2 inhibitors, such as Remdesivir and Aloxistatin, supporting the validity of our approach. DEEMD is scalable to process and screen thousands of treatments in parallel and can be explored for other emerging viruses and datasets to rapidly identify candidate antiviral treatments in the future.

READ FULL TEXT

page 13

page 20

research
10/14/2018

Fine-Grained Classification of Cervical Cells Using Morphological and Appearance Based Convolutional Neural Networks

Fine-grained classification of cervical cells into different abnormality...
research
08/05/2022

3D single-cell shape analysis of cancer cells using geometric deep learning

Aberrations in cell geometry are linked to cell signalling and disease. ...
research
09/08/2023

SegmentAnything helps microscopy images based automatic and quantitative organoid detection and analysis

Organoids are self-organized 3D cell clusters that closely mimic the arc...
research
04/09/2018

Towards Deep Cellular Phenotyping in Placental Histology

The placenta is a complex organ, playing multiple roles during fetal dev...
research
11/02/2017

Correcting Nuisance Variation using Wasserstein Distance

Profiling cellular phenotypes from microscopic imaging can provide meani...
research
12/06/2021

Anchoring to Exemplars for Training Mixture-of-Expert Cell Embeddings

Analyzing the morphology of cells in microscopy images can provide insig...
research
11/19/2021

Urine Microscopic Image Dataset

Urinalysis is a standard diagnostic test to detect urinary system relate...

Please sign up or login with your details

Forgot password? Click here to reset