Deconfounded Image Captioning: A Causal Retrospect

03/09/2020
by   Xu Yang, et al.
0

The dataset bias in vision-language tasks is becoming one of the main problems that hinder the progress of our community. However, recent studies lack a principled analysis of the bias. In this paper, we present a novel perspective: Deconfounded Image Captioning (DIC), to find out the cause of the bias in image captioning, then retrospect modern neural image captioners, and finally propose a DIC framework: DICv1.0. DIC is based on causal inference, whose two principles: the backdoor and front-door adjustments, help us to review previous works and design the effective models. In particular, we showcase that DICv1.0 can strengthen two prevailing captioning models and achieves a single-model 130.7 CIDEr-D and 128.4 c40 CIDEr-D on Karpathy split and online split of the challenging MS-COCO dataset, respectively. Last but not least, DICv1.0 is merely a natural derivation from our causal retrospect, which opens a promising direction for image captioning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro