Decompositions of q-Matroids Using Cyclic Flats

02/04/2023
by   Heide Gluesing-Luerssen, et al.
0

We study the direct sum of q-matroids by way of their cyclic flats. Using that the rank function of a q-matroid is fully determined by the cyclic flats and their ranks, we show that the cyclic flats of the direct sum of two q-matroids are exactly all the direct sums of the cyclic flats of the two summands. This simplifies the rank function of the direct sum significantly. A q-matroid is called irreducible if it cannot be written as a (non-trivial) direct sum. We provide a characterization of irreducibility in terms of the cyclic flats and show that every q-matroid can be decomposed into a direct sum of irreducible q-matroids, which are unique up to equivalence.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset