Decision-Theoretic Meta-Learning: Versatile and Efficient Amortization of Few-Shot Learning

05/24/2018
by   Jonathan Gordon, et al.
0

This paper develops a general framework for data efficient and versatile deep learning. The new framework comprises three elements: 1) Discriminative probabilistic models from multi-task learning that leverage shared statistical information across tasks. 2) A novel Bayesian decision theoretic approach to meta-learning probabilistic inference across many tasks. 3) A fast, flexible, and simple to train amortization network that can automatically generalize and extrapolate to a wide range of settings. The VERSA algorithm, a particular instance of the framework, is evaluated on a suite of supervised few-shot learning tasks. VERSA achieves state-of-the-art performance in one-shot learning on Omniglot and miniImagenet, and produces compelling results on a one-shot ShapeNet view reconstruction challenge.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro