Decision-making with Imaginary Opponent Models

11/22/2022
by   Jing Sun, et al.
0

Opponent modeling has benefited a controlled agent's decision-making by constructing models of other agents. Existing methods commonly assume access to opponents' observations and actions, which is infeasible when opponents' behaviors are unobservable or hard to obtain. We propose a novel multi-agent distributional actor-critic algorithm to achieve imaginary opponent modeling with purely local information (i.e., the controlled agent's observations, actions, and rewards). Specifically, the actor maintains a speculated belief of the opponents, which we call the imaginary opponent models, to predict opponents' actions using local observations and makes decisions accordingly. Further, the distributional critic models the return distribution of the policy. It reflects the quality of the actor and thus can guide the training of the imaginary opponent model that the actor relies on. Extensive experiments confirm that our method successfully models opponents' behaviors without their data and delivers superior performance against baseline methods with a faster convergence speed.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset