Decidability bounds for Presburger arithmetic extended by sine

03/31/2022
by   Eion Blanchard, et al.
0

We consider Presburger arithmetic extended by the sine function, call this extension sine-Presburger arithmetic (sin-PA), and systematically study decision problems for sets of sentences in sin-PA. In particular, we detail a decision algorithm for existential sin-PA sentences under assumption of Schanuel's conjecture. This procedure reduces decisions to the theory of the ordered additive group of real numbers extended by sine, which is decidable under Schanuel's conjecture. On the other hand, we prove that four alternating quantifier blocks suffice for undecidability of sin-PA sentences. To do so, we explicitly interpret the weak monadic second-order theory of the grid, which is undecidable, in sin-PA.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset