Decentralized Attribution of Generative Models

10/27/2020
by   Changhoon Kim, et al.
0

There have been growing concerns regarding the fabrication of contents through generative models. This paper investigates the feasibility of decentralized attribution of such models. Given a set of generative models learned from the same dataset, attributability is achieved when a public verification service exists to correctly identify the source models for generated content. Attribution allows tracing of machine-generated content back to its source model, thus facilitating IP-protection and content regulation. Existing attribution methods are non-scalable with respect to the number of models and lack theoretical bounds on attributability. This paper studies decentralized attribution, where provable attributability can be achieved by only requiring each model to be distinguishable from the authentic data. Our major contributions are the derivation of the sufficient conditions for decentralized attribution and the design of keys following these conditions. Specifically, we show that decentralized attribution can be achieved when keys are (1) orthogonal to each other, and (2) belonging to a subspace determined by the data distribution. This result is validated on MNIST and CelebA. Lastly, we use these datasets to examine the trade-off between generation quality and robust attributability against adversarial post-processes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset