DCNGAN: A Deformable Convolutional-Based GAN with QP Adaptation for Perceptual Quality Enhancement of Compressed Video

01/22/2022
by   Saiping Zhang, et al.
1

In this paper, we propose a deformable convolution-based generative adversarial network (DCNGAN) for perceptual quality enhancement of compressed videos. DCNGAN is also adaptive to the quantization parameters (QPs). Compared with optical flows, deformable convolutions are more effective and efficient to align frames. Deformable convolutions can operate on multiple frames, thus leveraging more temporal information, which is beneficial for enhancing the perceptual quality of compressed videos. Instead of aligning frames in a pairwise manner, the deformable convolution can process multiple frames simultaneously, which leads to lower computational complexity. Experimental results demonstrate that the proposed DCNGAN outperforms other state-of-the-art compressed video quality enhancement algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset